Stretches and Compressions

These notes are intended as a summary of section 3.3 (p. 193-200) in your workbook. You should also read the section for more complete explanations and additional examples.

Recall that $f(x)=x^{2}+2$ is $f(x)=x^{2}$ translated 2 units up, and that $f(x)=(x+2)^{2}$ is $f(x)=x^{2}$ translated 2 units left.

Adding or subtracting a constant results in a translation,

- vertically if the constant is added to the entire function, as in $f(x)+k$
- horizontally if the constant is added to only the x -value, as in $f(x-h)$

In this lesson, we will examine what happens when you multiply by a constant.

Vertical Stretch/Compression

On the axes pictured to the right, you will see the graph of $y=x^{2}$.

To see how the graph of $y=a x^{2}$ compares to the graph of $y=x^{2}$, plot the following functions on the same axes:

$$
\begin{array}{ll}
y=0.5 x^{2} & y=-0.5 x^{2} \\
y=2 x^{2} & y=-2 x^{2}
\end{array}
$$

In general, the graph of $y=a f(x)$ is the image of the graph of $y=f(x)$ after being vertically stretched, compressed, or reflected.

If $|a|>1$, there is a vertical stretch by a factor of $|a|$.
If $0<|a|<1$, there is a vertical compression by a factor of $|a|$.
If $a<0$ there is a reflection in the x-axis, in addition to the stretch or compression.
Note: The easiest way to draw a vertical stretch/compression of a graph is to replace every point (x, y) on $y=f(x)$ by a point $(x, a y)$ on $y=a f(x)$.

Example 1 (sidebar p. 196)

Here is the graph of $y=f(x)$. Sketch the graph of $y=-\frac{1}{4} f(x)$. State the domain and range of each function.

Horizontal Stretch/Compression

On the axes pictured to the right, you will see the graph of $y=x^{3}$.

To see how the graph of $y=(b x)^{3}$ compares to the graph of $y=x^{3}$, plot the following functions on the same axes:

$$
\begin{gathered}
y=(2 x)^{3} \\
y=\left(\frac{1}{4} x\right)^{3} \quad y=\left(-\frac{1}{4} x\right)^{3}
\end{gathered}
$$

In general, the graph of $y=f(b x)$ is the image of the graph of $y=f(x)$ after being horizontally stretched, compressed, or reflected.

$$
\text { If }|b|>1 \text {, there is a horizontal compression by a factor of } \frac{1}{|b|} \text {. }
$$

If $0<|b|<1$, there is a horizontal stretch by a factor of $\frac{1}{|b|}$.
If $b<0$ there is a reflection in the y-axis, in addition to the stretch or compression.

Note: The easiest way to draw a horizontal stretch/compression of a graph is to replace every point (x, y) on $y=f(x)$ by a point $\left(\frac{x}{b}, y\right)$ on $y=f(b x)$.

Example 2 (sidebar p. 198)

Here is the graph of $y=g(x)$. Sketch the graph of $y=g(0.5 x)$. State the domain and range of each function.

Combining Transformations

Stretches, compressions, and reflections may be combined. In general, the point (x, y) on $y=f(x)$ becomes the point $\left(\frac{x}{b}, a y\right)$ on $y=a f(b x)$.

Example 3 (sidebar p. 199)

Here is the graph of $y=f(x)$. Sketch the graph of $y=4 f(-0.5 x)$. State the domain and range of each function.

Example 4 (sidebar p. 200)

The graphs of $y=f(x)$ and its image after a vertical and/or horizontal compression are shown. Write an equation of the image graph in terms of the function f.

Example 5 (not in workbook)

Graph $y=3\left(-\frac{1}{2} x\right)^{3}$.

Homework: \#3-5, 7-10, 12-14 in the exercises (p. 201-211). Answers on p. 211.

